The Answers
to Polyolefin Characterization.

4th International Conference on Polyolefin Characterization

The Woodlands welcomes the world experts in Polyolefin Characterization. After the successful editions in Houston, Valencia and Shanghai, the 4th ICPC Conference will be held in Texas, as a leading market today in polyolefin research. Scientists both from the industry and academy from all around the world are expected to attend it. The technical program of 2012 edition will consist of 41 oral and 37 poster presentations, focusing on the latest developments and innovative research in Separation, Fractionation, Molecular Structure and Properties, Morphology and Thermal Analysis, Rheology and Spectroscopy.

www.icpc-conference.org
Dear ICPC Delegate,

Welcome to the 4th edition of the International Conference on Polyolefin Characterization. After successful previous editions in Houston, Valencia and Shanghai, we are proud to host this forth edition again in Texas, as a leading centre in the field of polyolefin research.

Once more, the 4th ICPC Conference will focus on the latest developments and innovative research in the characterization of polyolefins, grouped into sessions on Separation, Morphology, Rheology, Spectroscopy and Mathematical Modeling.

An outstanding technical program, composed of 41 lectures and 38 posters, will shape this 2012 edition, together with vendor presentations, a booth area, a companions program for attendee’s family, and networking cocktails in the evenings that we encourage you to attend.

Additionally, the 4th ICPC Short Course on Polyolefin Characterization Techniques will be held on the first day of the meeting. This one-day training course represents a unique scenario where the world experts in the field share their knowledge and experiences in GPC/SEC, Chemical Composition Distribution, High Temperature HPLC, Cross Fractionation and Preparative Fractionation techniques.

The 4th ICPC will provide once more a platform to bring together researchers from both industry and academia. With attendees from around 20 countries and representing over 50 different organizations that play a key-role in the research or production of polyolefins, ICPC covers again the whole world map, becoming this way a truly unique international conference on the field of polyolefin characterization.

On behalf of the ICPC Technical Committee and Organization, we want to thank most sincerely Speakers, Poster Authors, Attendees and Sponsors and Vendors for your support and active participation.

We hope you enjoy The Woodlands and trust the 4th ICPC will meet your expectations. We would be pleased to see you again at the 5th ICPC in 2014, in Valencia, Spain.

Sincerely yours,

Raquel Úbeda
ICPC Conference Coordinator

On behalf of the 4th ICPC Technical Program Chairs:

Dr. Benjamin Monrabal
Polymer Char
Valencia, Spain

Dr. Colin Li Pi Shan
The Dow Chemical Company
Freeport, TX, U.S.A.

Prof. João Soares
University of Waterloo
Waterloo, Canada

Prof. Minoru Terano
Japan Advanced Institute of Science and Technology

Prof. Dujin Wang
Institute of Chemistry,
Chinese Academy of Sciences
4th ICPC Conference at-a-glance.

Technical Committee
Benjamin Monrabal
Polymer Char, Spain
Colin Li Pi Shan
The Dow Chemical Company, U.S.A.
João Soares
University of Waterloo, Canada
Minoru Terano
Japan Advanced Institute of Science and Technology (JAIST), Japan
Dujin Wang
Institute of Chemistry of the Chinese Academy of Sciences (ICCAS), China

Keynote Speaker
Vincenzo Busico
Federico II University of Naples, Italy

Invited Speakers
Rufina Álamo
Florida A&M University - Florida State University (FAMU/FSU), U.S.A.
Robert Brüll
Fraunhofer Institute for Structural Durability and System Reliability (LBF), Germany
Rongjuan Cong
The Dow Chemical Company, U.S.A.
Paul DesLauriers
Chevron Phillips Chemical Company, U.S.A.
Charles C. Han
Chinese Academy of Sciences, China
Susana Liberman
Universidad Rio Grande Do Sul, UFRGS, Brazil
Faliang Luo
Shenhua Ningxia Coal Industry Group, China
Thomas McLeish
Durham University, United Kingdom
Harald Pasch
University of Stellenbosch, South Africa
Stepan Podzimek
SYNPO / University of Pardubice, Czech Republic
Daniel Read
University of Leeds, United Kingdom
Dalia Yablon
ExxonMobil Research and Engineering, U.S.A.

Major Sponsors
Shenhua Ningxia Coal Industry Group
ExxonMobil Chemical

Sponsors
The Dow Chemical Company
Chevron Phillips Chemical

Vendors
Polymer Char
Wyatt Technology
PSS, Polymer Standards Service
Malvern Instruments
Freeslate
Agilent Technologies
Jordi Labs
Progression Inc.

Research Partner
DPI, Dutch Polymer Institute

Media Partner
LCGC Group

Facts and Figures
Venue
The Woodlands Waterway Marriott Hotel & Convention Center.
1601 Lake Robbins Drive,
The Woodlands, Houston, TX, U.S.A.

Date
Short Course: October 21, 2012
Conference: October 22 - 24, 2012

Attendees
150

Presentations
Oral: 41
Poster: 38

Countries represented
21
Shenhua Ningxia Coal Industry Group Co., Ltd (Shenning Group in abbreviation) is Shenhua Group’s share-holding subsidiary, and a competitive backbone enterprise of Ningxia Hui Autonomous Region. The group operates in sectors such as coal mining & washing, coal deep processing, coal chemical industry, electric power, real estate and so on. Especially, coal chemical industry has become a pillar industry in group. In accordance with the thought of poly-generation coal-based chemicals circular economy and by introducing advanced technology of coal gasification and synthesis, the coal-based methanol of 0.25 million tons/year, dimethyl ether of 0.21 million tons/year, coal-based methanol 0.6 million tons/year, coal-based olefin 0.52 million tons/year, polypropylene 0.5 million tons/year and polyoxymethylene 0.06 million tons/year have been built and put into production. Coal-based polypropylene and polyoxymethylene have been applied in many fields. By 2015, the capacity of coal indirect liquefaction will achieve 7.4 million/tons, coal-based dimethyl ether 0.83 million/tons, and coal-based olefin 1 million/tons.

Striving to build a world-class modern coal chemical industry featuring industry cluster, technology aggregation, talent gathering and harmonious environment, and of high standard, efficiency and benefits.
Short Course on Polyolefin Characterization Techniques given by the Experts in the field.

SUNDAY, October 21st, 2012

7:30 - 8:20 Registration
8:20 - 8:30 Opening and Introduction to the Short Course

Introduction to Polyolefin Microstructure João Soares
8:30 - 9:15
- Molecular Weight Distribution.
- Chemical Composition Distribution.
- Bivariate Distribution (Long Chain Branching, Block Co-polymers...).
- Microstructure - Properties.

GPC Basics Wallace Yau
9:15 - 10:15
- Molecular Weight Average Concept.
- Basic GPC Mechanism.
- GPC Retention.
- Band Broadening.
- Different ways to do Calibrations.
- Basics on IV concept.
- Universal Calibration.
- Basic LS.
- Mark Houwink (MH) Plot.

10:15 - 10:30 Coffee Break

GPC - Practical Considerations David Gillespie
10:30 - 11:30
- System Considerations:
 - Choosing an Appropriate Column Set.
 - Pump Degradation.
 - Thermal Stability.
 - Data Acquisition.
- Sample Considerations:
 - Solvent and Solvent Preparation.
 - Sample Preparation.
 - Polymer Degradation.
- Calculation Considerations:
 - Flow rate analysis.
 - Mass analysis.
 - Viscosity analysis.
 - M&W analysis.
 - Copolymer analysis.

GPC - Applications in Polyolefins Wallace Yau
11:30 - 12:15
- Commercial Polymers:
 - HDPE/LDPE/LLDPE/Metallocenes.
 - iPP/iCP/iCP.
- Questions regarding Precision and Accuracy.
- Questions regarding cc-GPC MW, LS-MW, UC-MW.
- LCB analysis:
 - MH Plot with IRS SCB Correction.
 - LS Conformation Plot.
 - LCBI Methodology with Rheology.
- MWD and Rheology:
- Practical Examples and Applications:
 - A case of a Dual Reactor PE.
 - A case of Polymer Blend.
 - Tubular and Autoclave LDPE.
 - Reactive Extrusion.
 - PAO Samples.
 - Polymer Additives.
 - Block Copolymers.
 - EP Composition by IRS and MH Plot.

12:15 - 13:30 Lunch

TREF, CRYSTAF and CEF Benjamin Montesbal
13:30 - 15:00
- Chemical Composition Distribution importance.
- Analytical Techniques.
- Fundamentals of Crystallization techniques.
- TREF.
- CRYSTAF.
- CEF.
- Molar Mass Dependence.
- Calibration and Calculations.
- Kinetic Effects and Co-crystallization.
- Hyphenated Techniques.
- Applications.
Our customers seek the most innovative products, which is why we focus on breakthrough technology.

ExxonMobil Chemical is a premier petrochemical company and a partner of choice with world-class facilities around the globe. With a relentless focus on state-of-the-art technology and innovative solutions, we are committed to our customers and partners worldwide. We are proud to be a sponsor of the 4th International Conference on Polyolefin Characterization.

exxonmobilchemical.com
<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>15:00 - 15:15</td>
<td>Coffee Break</td>
</tr>
</tbody>
</table>
| 15:15 - 16:15 | **High Temperature HPLC of Polyolefins**
Willem deGroot
- Fundamentals of Liquid Chromatography.
- Classic Liquid Chromatography of Polymers – Examples.
- Crystallization Elution Fractionation (CEF).
- Background of HT-LC Development.
- High Temperature Solvent Gradient Interaction Chromatography.
- High Temperature Thermal Gradient Interaction Chromatography.
- Applications and New Developments.
- References. |
| 16:15 - 17:00 | **Cross-Fractionation Techniques**
Alberto Ortin
- Importance of the Bivariate Distribution.
- Hyphenated techniques.
- Preparative Fractionation followed by Analytical techniques.
- Analytical Cross Fractionation.
 - TREF x GPC technique description.
 - Calibration and data processing.
 - Application examples: blends, copolymers, HDPE, EP.
 - Additional detectors: IR and LS. |
| 17:00 - 17:45 | **Preparative Fractionation**
Benjamin Monrabal
- Importance of Preparative Fractionation.
- Solvent–Non solvent (Molecular Weight Fractionation).
- Dissolution Fractionation (Composition Fractionation TREF).
- Crystallization Fractionation (Composition Fractionation CRYSTAF).
- TGIC Fractionation.
- Characterization of an unknown sample. |
| 17:45 | Open Discussion |
DOW PERFORMANCE PLASTICS

HIGH-VALUE, MARKET-DRIVEN SOLUTIONS FROM A GLOBAL LEADER IN POLYMER TECHNOLOGY AND INNOVATION

Dow Performance Plastics offers increased value for customers and value chains in the following areas:

- Performance Packaging
- Elastomers
- Electrical & Telecommunications
- Hygiene & Medical
- Industrial & Consumer Specialties, including Pipe

HELPING LEAD THE WAY TO WHAT’S NEXT

As the world’s largest producer of Polyethylene and Polyolefin Elastomers, and a leading Wire and Cable compounder, our portfolio of proven, industry-leading solutions and groundbreaking innovations currently includes:

- AFFINITY® Polyolefin Plastomers
- AFFINITY GA Polyolefin Elastomers
- DOW ENDURANCE™ MV/HV/EHV Insulation
- DOWLEX® Polyethylene Resins
- ELITE™ Enhanced Polyethylene Resins
- ENGAGE™ Polyolefin Elastomers
- ENGAGE XLT Polyolefin Elastomers
- ENLIGHT™ Polyolefin Encapsulant Films
- INFUSE™ Olefin Block Copolymers
- OPTICITE™ Label Films
- SEALUTION™ Peel Polymers
- VERSIFY® Plastomers & Elastomers

With world-class assets and operations, complementary product lines and technology platforms, and the combined expertise of our employees, Dow Performance Plastics can collaborate with you to accelerate the development of new and disruptive plastics technologies with even faster response times, greater agility, and the potential for increased sustainability.

For more information on Dow Performance Plastics, visit www.dowperformanceplastics.com or contact us at 1-800-441-4369 or 1-989-832-1426.
A Technical Program focused on Separation, Morphology, Rheology, Spectroscopy and Modeling.

The 4th ICPC technical program consists of oral and poster presentations in the following polyolefin characterization areas: Separation-Fractionation, Molecular Structure and Properties, Morphology-Thermal Analysis, Rheology, Properties and Spectroscopy.

SUNDAY - October 21st, 2012

17:00 - 19:30 Registration
19:30 Welcome Cocktail

MONDAY - October 22nd, 2012

7:00 - 8:00 Registration
8:00 - 8:10 Opening Remarks

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:10 - 8:50</td>
<td>Spectroscopy - Properties Session Moderator: Minoru Terano</td>
</tr>
</tbody>
</table>
| 8:10 - 8:50 | ¹³C NMR Characterization of Polyolefins: a New Boost in Technology, another Quantum Leap in Data Acquisition and Structure/Properties Understanding.
Vincenzo Busico (Keynote Speaker)
Federico II University of Naples (Italy) |
Paul DesLauriers (Invited Speaker)
Chevron Phillips Chemical Company (U.S.A.) |
| 9:20 - 9:50 | Study on Microstructure and Property of Coal-Based Propylene and Polypropylene.
Faliang Luo (Invited Speaker)
Shenhua Ningxia Coal Industry Group (China) |
| 9:50 - 10:15 | Polyolefin Characterization with High Temperature NMR Cryoprobe.
Zhe Zhou
The Dow Chemical Company (U.S.A.) |
| 10:15 - 10:35 | Coffee Break |

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
</tr>
</thead>
</table>
| 11:05 - 11:30 | A “Systematic Approach” to TD-GPC Data Processing with Band Broadening Correction.
Lonnie Hazlitt
The Dow Chemical Company (U.S.A.) |
| 11:30 - 11:55 | Evidences of Long-Chain Branching in Ziegler-Natta Polyethylene Homopolymers as studied via SEC-MALS and Rheology.
Youlu Yu
Chevron Phillips Chemical Company (U.S.A.) |
| 11:55 - 12:20 | Characterization of Long Chain Branched Polymers by Comprehensive Two Dimensional Molecular Topology Fractionation x Size-Exclusion Chromatography.
David M. Meunier
The Dow Chemical Company (U.S.A.) |
| 12:20 - 13:20 | Lunch |

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
</tr>
</thead>
</table>
Daniel Read (Invited Speaker)
University of Leeds (United Kingdom) |
Ralf Klepinger
DSM Resolvo (The Netherlands) |
| 14:15 - 14:40 | Describing Structure Development in Flow Induced Crystallization Using Extended Dilatometry.
Martin Van Drongelen
Eindhoven University of Technology (The Netherlands) |
| 14:40 - 15:05 | Structure-Property Correlation of Olefin Block Copolymers.
Guoming Liu
Chinese Academy of Sciences (China) |
<p>| 15:05 - 15:30 | Coffee Break |</p>
<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>15:30 - 16:00</td>
<td>Polypropylene Heterophasic Copolymer: Molecular Structure Analysis through Fractionation Techniques. Susana Liberman (Invited Speaker) Universidad Rio Grande Do Sul, UFRGS (Brazil)</td>
</tr>
<tr>
<td>16:00 - 16:25</td>
<td>Characterization Comparison between Butene-1/Propylene and Ethylene /Propylene Copolymers. Guo Meifang Sinoppec Beijing Research Institute of Chemical Industry (China)</td>
</tr>
<tr>
<td>16:25 - 16:50</td>
<td>Multidimensional Fractionation Techniques for the Characterisation of HDPE Pipe Grades. Andreas Albrecht Borealis Polyolefine GmbH (Australia)</td>
</tr>
<tr>
<td>16:50 - 17:15</td>
<td>Powerful on-line FTIR Detection in Polyolefin Fractionation. Zengrong Zhang Nova Chemicals Corporation (Canada)</td>
</tr>
<tr>
<td>17:15 - 20:00</td>
<td>Poster Session</td>
</tr>
<tr>
<td>18:30</td>
<td>Poster Session Cocktail</td>
</tr>
</tbody>
</table>

TUESDAY - October 23rd, 2012

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:00 - 8:30</td>
<td>Advances in AFM-based Nanomechanical Measurements of Polyolefin Blends. Dalia Yablonska (Invited Speaker) ExxonMobil Research and Engineering (U.S.A.)</td>
</tr>
<tr>
<td>8:30 - 8:55</td>
<td>Imaging the Molecular Structure of Polyethylene Blends. Chad R. Snyder National Institute of Standards and Technology, NIST (U.S.A.)</td>
</tr>
<tr>
<td>Time</td>
<td>Session</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
</tr>
<tr>
<td>14:15 - 14:40</td>
<td>Investigation on the Molecular Structure- Mechanical Properties Relations in Polypropylene / Poly(Ethylene-Co-Propylene) ((PP/EPR) In- Reactor Alloys.</td>
</tr>
<tr>
<td>14:40 - 15:05</td>
<td>Advanced Analysis of LDPE: Closing the Loop between Chemistry and Product Properties.</td>
</tr>
<tr>
<td>15:05 - 15:30</td>
<td>Coffee Break</td>
</tr>
<tr>
<td>14:15 - 14:40</td>
<td>The Effect of In-Process Ethylene Incorporation on the Evolution of Particle Morphology and Molecular Characteristics of Commercial Heterophasic Ethylene Propylene Copolymers (HEPCs).</td>
</tr>
<tr>
<td>15:30 - 16:00</td>
<td>Molecular Engineering of Process Rheology for Long Chain Branched Melts.</td>
</tr>
<tr>
<td>16:00 - 16:25</td>
<td>A Tool for Deconvoluting the Distribution of Molecular Weight and Chemical Composition of Blends of Ethylene/Octene Copolymers.</td>
</tr>
<tr>
<td>16:25 - 16:50</td>
<td>Development of a Mathematical Model for Temperature Rising Elution Fractionation (TREF).</td>
</tr>
<tr>
<td>16:50 - 17:10</td>
<td>Break</td>
</tr>
<tr>
<td>17:10 - 18:30</td>
<td>Vendor Session</td>
</tr>
<tr>
<td>18:30</td>
<td>Vendor Session Cocktail</td>
</tr>
<tr>
<td>14:15 - 14:40</td>
<td>The Effect of In-Process Ethylene Incorporation on the Evolution of Particle Morphology and Molecular Characteristics of Commercial Heterophasic Ethylene Propylene Copolymers (HEPCs).</td>
</tr>
<tr>
<td>8:55 - 9:20</td>
<td>The Effect of In-Process Ethylene Incorporation on the Evolution of Particle Morphology and Molecular Characteristics of Commercial Heterophasic Ethylene Propylene Copolymers (HEPCs).</td>
</tr>
<tr>
<td>9:45 - 10:10</td>
<td>Coffee Break</td>
</tr>
<tr>
<td>10:10 - 10:40</td>
<td>Importance of Multi-Angle Light Scattering in Polyolefin Characterization.</td>
</tr>
<tr>
<td>10:40 - 11:05</td>
<td>Application of High Temperature Chromatographic and Viscometric Techniques for the Characterization of Highly Isotactic Polypropylene Samples.</td>
</tr>
<tr>
<td>11:05 - 11:30</td>
<td>Characterization of Chemical Composition across Molar Mass Distribution in Polyolefin Copolymers by GPC-IR using a Filter-based IR Detector.</td>
</tr>
<tr>
<td>11:30 - 11:55</td>
<td>Preparation of Homogeneous Poly(Ethylene-Co-olefin) and their Use as Standards for TREF, CRYSTAF and Interactive Liquid Chromatography.</td>
</tr>
<tr>
<td>12:20 - 12:30</td>
<td>Adjournment and Goodbye</td>
</tr>
<tr>
<td>12:30</td>
<td>Lunch</td>
</tr>
</tbody>
</table>

Modeling - Rheology

Session Moderator: Paul DesLauriers

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Speaker</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>15:30 - 16:00</td>
<td>Molecular Engineering of Process Rheology for Long Chain Branched Melts.</td>
<td>Thomas McLeish (Invited Speaker)</td>
<td>Durham University (United Kingdom)</td>
</tr>
<tr>
<td>16:00 - 16:25</td>
<td>A Tool for Deconvoluting the Distribution of Molecular Weight and Chemical Composition of Blends of Ethylene/Octene Copolymers.</td>
<td>Ryan J. DePuit</td>
<td>The Dow Chemical Company (U.S.A.)</td>
</tr>
<tr>
<td>16:25 - 16:50</td>
<td>Development of a Mathematical Model for Temperature Rising Elution Fractionation (TREF).</td>
<td>Sirgon Anantawaratskul</td>
<td>Kasetsart University (Thailand)</td>
</tr>
<tr>
<td>16:50 - 17:10</td>
<td>Break</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17:10 - 18:30</td>
<td>Vendor Session</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18:30</td>
<td>Vendor Session Cocktail</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

WEDNESDAY - October 24th, 2012

Morphology (III)

Session Moderator: Charles Han

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Speaker</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:00 - 8:30</td>
<td>Crystalline Properties of Late Generation Polyolefins.</td>
<td>Rufina Alamo (Invited Speaker)</td>
<td>Florida A&M University - Florida State University (FAMU/FSU) (U.S.A.)</td>
</tr>
<tr>
<td>8:30 - 8:55</td>
<td>Structure Dependent Plasticity of Isotactic Polypropylene.</td>
<td>Dario Cavallo</td>
<td>Eindhoven University of Technology (The Netherlands)</td>
</tr>
</tbody>
</table>
The art of connecting

The polymer world is facing a number of challenges and the market demand for polymers is growing. Meanwhile, driven by modern science and technology and pressure from society for new, sustainable solutions, the range and quality of technological options are rapidly increasing. These challenges are too broad and too complex to be addressed by a single party. The Dutch Polymer Institute (DPI) provides a genuine response to those challenges by organising knowledge in the field of polymers and connecting polymer scientists.

DPI connects about 40 knowledge institutes and more than 35 companies. Over 200 inspired researchers from all over the world are engaged in DPI projects. Together we are working on pre-competitive research into polymers and their applications, with a view to stimulating breakthrough innovations and educating researchers.

For more information: www.polymers.nl

Annual Meeting 2012

On 13 and 14 November, DPI will hold its Annual Meeting. This two-day event will take place in Zeist, the Netherlands. The programme includes presentations by national and international speakers from both academia and industry. Confirmed speakers include Professor Sir Richard Friend (University of Cambridge), Professor Ludwig Leibler (ESPCI Paris) and Professor Thijs Michels (TU/Eindhoven).
<table>
<thead>
<tr>
<th>Poster Presentations</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>MONDAY - October 21st, 2012</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. A Comparison between CEF and HT-TGIC of Ziegler-Natta LLDPE resins. Abdulaziz A. Alghyamah1,2, João B.P. Soares1</td>
</tr>
<tr>
<td>3. Mathematical Model of Dynamic Crystallization for Ethylene/1-Octene Copolymers made with Metallocene Catalysts. Nuttawat Chokputtanawuttilerd1, Siripon Anantawaraskul1,2, *, João B. P. Soares1, Abdulaziz A. Alghyamah1</td>
</tr>
<tr>
<td>4. Deconvolution of Molecular Weight Distribution and Chemical Composition Distribution of Ethylene/1-Olefin Copolymers made with Multiple-site-type Catalysts using Genetic Algorithm. Uthana Nanthapoolsub1, Kornwit Saengkhamkhom1,2, Siripon Anantawaraskul1,2 *</td>
</tr>
<tr>
<td>5. Mathematical Model of Gradient Adsorption High Temperature Liquid Chromatography (HT-LC) for Ethylene/1-Octene Copolymers made with Metallocene Catalysts. Nantiya Inwong1, Siripon Anantawaraskul1,2 *</td>
</tr>
<tr>
<td>7. Simulation of Temperature Rising Elution Fractionation (TREF) of Linear Olefin Block Copolymers (OBCs). Ekaphal Srisawangarn1,2, Siripon Anantawaraskul1,2, *, João B. P. Soares1</td>
</tr>
<tr>
<td>8. TREF, CRYSTAF and DSC Calibration using Homogeneous Ethylene/-olefin Copolymers. Olivier Boyron, Christophe Boisson Université de Lyon, France</td>
</tr>
<tr>
<td>10. Chemical Composition Characterization of Ethylene/1-olefin Copolymers using Adsorption Liquid Chromatography and CRYSTAF. Rajesh Chitta1, Robert Bruil1, Christophe Boisson2, Olivier Boyron1, Tibor Macko2</td>
</tr>
<tr>
<td>11. Comparison of Elution Profiles obtained with CRYSTAF, TREF and High-Temperature HPLC for Ethylene/1-Alkene Copolymers. T. Macko1, R. Chitta, R. Bruil1, Ch. Boisson1, O. Boyron1</td>
</tr>
</tbody>
</table>
12. Evaporative Light Scattering Detector and Calibration of its Response for Polyolefins.
J.-H. Arndt, T. Macko, V. Busico, R. Brüll
Fraunhofer Institute for Structural Durability and System Reliability (LBF), Germany
Dutch Polymer Institute (DPI), The Netherlands
Federico II University of Naples, Italy

R. Maria, T. Schuster, K. Rode, S. Damodaran, R. Brüll, Mirko Wenzel, Kurt Engelsing, Martin Bastian
Fraunhofer Institute for Structural Durability and System Reliability (LBF), Germany
Suddeutsches Kunststoff-Zentrum (SKZ), Germany

T. Schuster, K. Rode, S. Damodaran, R. Brüll
Fraunhofer Institute for Structural Durability and System Reliability (LBF), Germany

15. Preparation and characterization of PE-g-Alt.
Marco A. da Silva, Griselda B. Galland
Universidade Federal do Rio Grande do Sul, Brazil
BRASIL S.A., Brazil

Camille Descour, Timo Sciarone, Mauritz Kelchtermans, Ilia Korobkov, Robbert Duchateau
Eindhoven University of Technology, The Netherlands
Exxon Mobil Chemical Europe, Belgium
University of Ottawa, Canada

Pilar del Hierro, Jesus Montesinos, Rubén Tarín, Benjamin Monrabal
Polymer Char, Spain

18. Mechanical Properties of Polypropylene/Reduced Graphite Oxide Composites by In-situ Ziegler-Natta Polymerization.
Yingjian Huang, Jin-Yong Dong
Chinese Academy of Sciences, China

19. Molecular Weight Scaling of the Spherulite Growth Rate in Isothermally Melt Crystallized Polyethylene Nanocomposites.
J. Jancar, K. Fiore
Bino University of Technology, Czech Republic

Toshifumi Kakiuchi, Minami Kikuchi, Yoji Nakajima, Tsuguhide Isemura
Asahi Glass Co. Ltd, Japan

21. Moving from TCB to o-DCB Solvent in GPC/SEC using Infrared Detector.
Esther Lopez, Alberto Ortin, Jesus Montesinos
Polymer Char, Spain

22. Quantification of Antioxidants Additives in High-Density Polyethylene using FTIR Spectroscopy.
Betsy Martinez Rodriguez, Ignacio Penichet Recio, Tamara Rajmankova
Applications Department. Investigación y Desarrollo C.A (INDESCA), Venezuela
University of Zulia, Venezuela

Kelly Santos, Susana Liberman, Diego Bracho, Raúl Quijada, Raquel Mouler
Chemistry Institute – University federal of Rio Grande do Sul, Brazil
Departamento de Ingeniería Química y Biotecnología-Universidad de Chile, Chile

John McConville, Peter Montag, Günter Reinhold, Thorsten Hofe
PSS USA Inc., U.S.A.
PSS GmbH, Germany
João B. P. Soares, Saeid Mehdiabadi
University of Waterloo, Canada |
Tamara Meijer-Vissers¹,², Han Goossens¹
¹ Eindhoven University of Technology, The Netherlands
² Dutch Polymer Institute (DPI), The Netherlands |
| 27. | Improvements in the Sample Preparation of Polyolefins to prevent Polymer Degradation prior to GPC/SEC and CEF analysis.
Benjamin Monrabal, Pilar del Hierro, Alfredo Roig
Polymer Char, Spain |
Tetsuya Morioka, Koushi Matsubara
Japan Polychem Corporation, Japan |
Alberto Ortín¹, Olivier Boyron²
¹ Polymer Char, Spain
² Université de Lyon, France |
Carolina Ruiz-Orra¹, Mª Belén Mula Andrés¹, Alberto Ortín²,
Benjamin Monrabal²
¹ Repsol, Spain
² Polymer Char, Spain |
| 31. | Elution Behavior of Branched Polyolefins in Size Exclusion Chromatography.
Stepan Podzimek
SYNPO / Faculty of Chemical Technology, University of Pardubice (Czech Republic) |
| 32. | Characterization Ziegler–Natta Catalyst on Spherical Magnesium Chloride for Propylene Polymerization.
Amir Rouhieefat¹, Saeed Pourmahdian²
¹ Amirkabir University of Technology, Iran
² University of Stellenbosch, South Africa |
| 33. | Mathematical Modeling of Olefin Polymerization with Multiple-site-type Catalysts.
João B. P. Soares¹,², Al-Saleh, M.³, Alghyamah A.¹, Duever T.A.¹
¹ University of Waterloo, Canada
² Kuwait Institute for Scientific Research, Kuwait |
Kengo Takeuchi, Toshiaki Tanikie and Minoru Terano
Japan Advanced Inst. Of Science and Technology (JAIST), Japan |
| 35. | High Stabilization Effects of Dendritic Polyester for Polypropylene Nanocomposites.
Ikki Katada, Toshiaki Tanikie and Minoru Terano*
Japan Advanced Inst. Of Science and Technology (JAIST), Japan |
Jirí Tochacek, Josef Jancar
Bíno University of Technology, Czech Republic |
| 37. | High Temperature Liquid Chromatography – Making This New Technique fit for Industrial Application.
D. Mekap¹, T. Macko², R. Bruidl², R. Cong², A. W. deGroot², and W. You²
¹ Fraunhofer Institute for Structural Durability and System Reliability (LBF), Germany
² The Dow Chemical Company, U.S.A. |
| 38. | HT Experimentation in Rotational Rheology for Polymer Melts Applications.
Robert Freisinger, Paul Staudinger
Anton Paar GmbH, Graz, Austria |
4th ICPC provides, parallel to the main scientific program, several sessions sponsored by the Vendors. In these sessions the Vendors present their last instrumentation, software and service solutions aimed at polyolefin characterization laboratories work.

Following are the presentations list scheduled for 4th ICPC Conference:

Polymer Char High Temperature GPC-IR with integrated IRS MCT for Polyolefin Analysis: a Breakthrough in Sensitivity and Automation.
Polymer Char

Light Scattering - A Unique Technology for Polymer Characterization.
Wyatt Technology

Columns, Standards, Solutions and Services for HT-GPC.
PSS, Polymer Standards Service

Malvern Polyolefin Characterization Technology Package.
Malvern Instruments

High Throughput Research for Polyolefin Catalyst and Product Development.
Freeslate

Agilent Technologies Platform Solutions for GPC.
Agilent Technologies

Jordi Labs Analytical Capabilities and Chromatography Consumables.
Jordi Labs

Global Success of Real-time Polyolefin Characterization by Process NMR.
Progression, Inc.
Your Polyolefin Characterization Partner

Today, in the area of Polyolefin Characterization, you can rely on Polymer Char’s expertise and Customer commitment, by offering modern and reliable solutions and efficient service.

Polymer Char offers a broad range of modern instruments and analytical services for Polyolefin Analysis, outstanding in GPC/SEC with GPC-IR, in Chemical Composition Distribution with CRYSTAF, TREF or CEF, or in Xylene Solubles analysis with CRYSTEX.

With installations in over 20 countries and analytical services provided to 35 countries, Polymer Char has clearly become the leader in research, engineering, software and service in Polyolefin Characterization. Having worked with many advanced laboratories in the world during the last 20 years has made it possible.

Find out more at: www.polymerchar.com/about-us
Thanks to the 4th ICPC Sponsors,

Major Sponsors

Shenhua Ningxia Coal Industry Group

Shenhua Ningxia Coal Industry Group Co., Ltd (Shenning Group in abbreviation) is Shenhua Group's share-holding subsidiary, and a competitive backbone enterprise of Ningxia Hui Autonomous Region. In Dec. 2002, the CPC Committee and government of Ningxia restructured the coal industry groups of Genyuan, Taixi, Lingzhou, and the original Ningxia Coal Industry Group into a new Ningxia Coal Industry Group Co., Ltd. By increasing capital and equity, Ningxia government cooperated with Shenhua Group to establish Shenhua Ningxia Coal Industry Group Co., Ltd in Jan. 2006, with registration capital of RMB 10.1 billion, of which 51% from Shenhua, and 49% from Ningxia government. By the end of 2009, the group's total assets had been over RMB 60 billion.

www.nxmy.com

ExxonMobil Chemical

ExxonMobil Chemical is a global leader in the petrochemicals industry, applying breakthrough proprietary technology to create products that improve the quality of life for people around the world. Today, our global network of manufacturing facilities, technology centers and businesses has enabled the company to become the market leader in some of the largest-volume and highest-growth petrochemical markets. As part of Exxon Mobil Corporation, the Chemical Company is integrated with the Corporation's other programs, giving us an unparalleled ability to serve our customers as well as share technologies and best practices.

www.exxonmobilchemical.com

Sponsors

The Dow Chemical Company

Dow combines the power of science and technology to passionately innovate what is essential to human progress, connecting chemistry and innovation with the principles of sustainability to help address many of the world’s most challenging problems such as the need for clean water, affordable housing, healthy foods and renewable energy. Dow’s diversified portfolio delivers a broad range of technology-based products and solutions to customers in approximately 160 countries and in high growth sectors such as electronics, water, energy, coatings and agriculture. In 2011, Dow had annual sales of $60.0 billion and employed approximately 52,000 people worldwide. The Company’s more than 5,000 products are manufactured at 197 sites in 36 countries across the globe.

www.dow.com

Chevron Phillips Chemical Company LLC

Chevron Phillips Chemical is one of the world’s top producers of olefins and polyolefins and a leading supplier of aromatics, alpha olefins, styrenics, specialty chemicals, plastic piping and polymer resins. On July 1, 2000, Chevron Corporation and Phillips Petroleum Company, now Phillips 66, combined their worldwide petrochemical businesses, excluding Chevron’s oronite additives business, to form Chevron Phillips Chemical Company LLC, a 50/50 joint venture between the two parent companies. The LLC and its affiliates own more than $9 billion in assets and employ approximately 4,700 people at 42 manufacturing and research facilities in eight countries.

www.cpchem.com
Vendors and Partners.

Vendors

Polymer Char

Polymer Char, the leading Polyolefin Characterization Company, is the unique company fully-dedicated to Polyolefin Characterization, with the broadest and most modern range of instruments and services, outstanding its solutions for Molar Mass Distribution – GPC/SEC (GPC-iR, GPC One), Chemical Composition Distribution (CRYSTAF, TREF, CEF), Bivariate Distribution (CFC), Xylene Solubles (CRYSTEX), Preparative Fractionation (PREP mc2) or Infrared Detectors (IR4, IR5 MCT). With equipments installed in over 20 countries, Polymer Char has clearly become the leader in research, engineering, software and service in Polyolefin Analysis. Having worked with the most advanced labs in the world during the last 20 years has made it possible.

www.polymerchar.com

Wyatt Technology

DAWN family of Multi-Angle Light Scattering (MALS) instruments for absolute macromolecular characterization determine absolute molecular weights, sizes, and branching of polymers following separation. DynaPro dynamic light scattering (DLS) instruments including DynaPro NanoStar and Plate Reader for automated size determination of nanoparticles. Eclipse Field Flow Fractionation (FFF) combined with MALS separates nanoparticles, polymers and other macromolecules. The Möbius (mobility and zeta-potential) for measurements of particles and macromolecules.

www.wyatt.com

PSS, Polymer Standards Service

PSS - Driving GPC/SEC Forward. GPC/SEC is our passion. We at PSS are fully dedicated to the advancement of macromolecular liquid chromatography by means of developing true solutions and providing competent and personal support. Based on excellent products and the latest findings in material science, we create easy-to-use and powerful solutions for QC and R&D. From a single molar mass reference material to turn-key systems for GPC/SEC multi detection with light scattering, viscometry, mass spectrometry or fully compliant GPC/SEC for the pharmaceutical industry: PSS offers all products and services for successful macromolecular analysis and expert support by GPC/SEC enthusiasts!

www.polymer.de

Malvern Instruments

Malvern Instruments provides a range of complementary materials characterization tools that deliver inter-related measurements reflecting the complexities of particulates and disperse systems, nonmaterial and macromolecules. Molecule conformation, Molecular Weight, Solution Viscosity, Particle size distribution, zeta potential, chemical composition, and bulk materials properties can all be determined using instruments from the Malvern range.

www.malvern.com
Freeslate

Freeslate is a privately held company that provides products and related services for high throughput research. Based on its proprietary laboratory automation platforms, high throughput pressure reactors, and integrated Lab Execution and Analysis (LEA) software suite, the company enables dramatic gains in its customers’ productivity and innovation by delivering seamlessly integrated automation solutions. Freeslate leverages its scientific expertise through its team of Ph.D. scientists, engineers, and software developers with directly relevant experience in the industries it serves. Collaborating with customers for more than a decade, the business has provided high throughput research solutions for the pharmaceutical, chemical, energy, and consumer products industries. The company is headquartered in Sunnyvale, California, with direct sales and service in North America, Europe and Asia.

www.freeslate.com

Agilent Technologies

Agilent manufactures and distributes a complete line of instrumentation serving the clinical, analytical, biotech, environmental, pharmaceutical, forensic science, food and flavor, academia, and all other laboratory markets that have needs for the best in quality, performance, and serviceability in the instruments they purchase.

www.chem.agilent.com

Jordi Labs

Jordi Labs was founded in 1980 to provide the highest quality analytical services, polymer based HPLC columns and packing media in the industry. As a family company, we take pride in the production of each of our products. Customers in nearly all industries are currently using our columns, packing media, and SPE products worldwide. It is our goal to help our customers overcome their analytical challenges by providing excellent products and personal assistance from our highly trained staff. Jordi Labs provides contract analytical services with a special emphasis on chemical identification and liquid chromatography products.

www.jordilabs.com

Progression Inc.

For more than 10 years, Progression, Inc. continues to be the world’s leading supplier of NMR technology to the polyolefin industry. With more than 400 installations across the globe, Progression has led the development and innovation of new technology which has been used in research laboratories, quality control labs, and on-line process analysis. Progression’s NMR technology has been successfully implemented for the analysis of density, xylene solubles, crystallinity, ethylene content, molecular weight as well as many mechanical and thermal properties. Progression continues to develop new and exciting solutions that now are used in the biofuels, bio-plastics and coal mining industries for real-time elemental analysis.

www.progression-systems.com

Research Partner

DPI, Dutch Polymer Institute

The Dutch Polymer Institute (DPI) was established in 1997 as a public-private partnership to perform pre-competitive research into polymers and their application, linking scientific knowledge to the industrial need for innovation. This results in added value for universities in scientific publications and for companies in intellectual property rights and the possibilities to execute new activities. Some 200 researchers (PhDs and Post-Docs) are currently involved in DPI projects at knowledge institutes throughout the world.

www.polymers.nl

Media Partner

LCGC Group

The LCGC Group spans across Europe, North America and Asia Pacific. Our editorial content across print and electronic products covers all key growth segments including food analysis, bioanalysis, environmental analysis, pharmaceutical analysis, and petroleum and biofuels research.

www.chromatographyonline.com
Relying on standards to characterize your macromolecules? Good luck to you.

Calibration-based measuring techniques require you to make assumptions which aren't always correct. Which is precisely why every major pharmaceutical and biotechnology company, as well as most federal regulatory agencies are switching from relative methods to Wyatt Technology’s absolute measurements. Our DAWN® multi-angle light scattering (MALS) instruments allow you to determine absolute molecular weights and sizes without relying on so-called standards, or measurements made in someone else’s lab. Wyatt instruments measure all of the quantities required for determining absolute molar masses directly. So call 805.681.9009 or visit www.wyatt.com and request our 32-page Ultimate Guide to Light Scattering. Our booklet will show you how to base your conclusions on something far more reliable than hope.
All Editions at-a-glance.

<table>
<thead>
<tr>
<th></th>
<th>1st ICPC Conference</th>
<th>2nd ICPC Conference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Venue</td>
<td>Houston, TX, U.S.A. 2006</td>
<td>Valencia, Spain. 2008</td>
</tr>
<tr>
<td>Attendees</td>
<td>112</td>
<td>120</td>
</tr>
<tr>
<td>Oral Presentations</td>
<td>31</td>
<td>35</td>
</tr>
<tr>
<td>Poster Presentations</td>
<td>29</td>
<td>38</td>
</tr>
<tr>
<td>Major Sponsors</td>
<td>The Dow Chemical Company</td>
<td>The Dow Chemical Company</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Borealis Group</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LyondellBasell</td>
</tr>
<tr>
<td>Sponsors</td>
<td>ExxonMobil Chemical</td>
<td>DPI, Dutch Polymer Institute</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ExxonMobil</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Agilent Technologies</td>
</tr>
<tr>
<td>Vendors</td>
<td>Polymer Char</td>
<td>Anton Paar</td>
</tr>
<tr>
<td></td>
<td>Polymer Laboratories</td>
<td>Polymer Char</td>
</tr>
<tr>
<td></td>
<td>Postnova Analytics</td>
<td>Polymer Laboratories, now a part of Varian</td>
</tr>
<tr>
<td></td>
<td>PSS, Polymer Standards Service</td>
<td>Progression</td>
</tr>
<tr>
<td></td>
<td>Viscotek</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Waters</td>
<td></td>
</tr>
<tr>
<td>Research Partner</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Media Partner</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Publications</td>
<td>Macromolecular Symposia Vol. 257</td>
<td>Macromolecular Symposia Vol. 282</td>
</tr>
<tr>
<td></td>
<td>’Polyolefin Characterization’</td>
<td>’Polyolefin Characterization’, ICPC 2008</td>
</tr>
<tr>
<td>Countries Represented</td>
<td>18</td>
<td>24</td>
</tr>
</tbody>
</table>
ICPC Macromolecular Symposia Books:

Many Oral and Poster Presentations full papers presented at previous ICPC conferences have been collected in special Macromolecular Symposia books dedicated to each edition:

We are pleased to inform that Macromolecular Symposia will publish again an issue dedicated to this 4th ICPC edition of the ICPC conference.

If you are participating in the 4th ICPC Technical Program with an oral and/or a poster presentation, you are invited to submit the whole paper/s for the dedicated book to this 4th ICPC edition.

Submission instructions can be found at the journal’s website:
http://mc.manuscriptcentral.com/masy/

For more information, please contact the Editor: Professor João Soares.
Represented by the Top Players from the Polyolefin’s Industry, Research and Academia.

- Agilent Technologies
- Albemarle
- Amirkabir University of Technology
- Anhui University of Science and Technology
- Anton Paar
- Arkema Group
- Asahi Glass
- Asahi Kasei Plastics
- BASF
- Beijing National Laboratory for Molecular Sciences
- Beijing Research Institute of Chemical Industry
- Beijing Yansan Petrochemical Branch of Sinopec
- Beijing Yiluda Electromechanical Equipment
- Borealis
- Boreskov Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences
- Borouge
- Braskem
- Brno University of Technology
- Celgard
- Changchun Institute of Applied Chemistry
- Chevron Phillips
- Chonbuk National University
- Ciba Chemicals
- Clariant
- Consiglio Nazionale delle Ricerche di Genova (CNR)
- Culgi
- Daelim Industrial
- Daqing Chemical Engineering Research Center
- Daqing Oil Field Company
- Department of Science Service of Thailand
- DuPont
- Dutch Polymer Institute (DPI)
- Durham University
- DSM Elastomers
- DSM Resolve
- East China University of Science and Technology
- ExxonMobil Chemical
- Federico II University of Naples
- Florida State University (FSU)
- Formosa Plastics Corporation
- Fraunhofer Institute for Structural Durability and System Reliability LBF
- Freeslate
- Freiburg Materials Research Center
- French National Center for Scientific Research (LCPP - CNRS)
- Friedrich-Alexander University of Erlangen Nürnberg
- GE Global Research
- Graduate University of Chinese Academy of Sciences
- GS Caltex
- Hanwha Corporation
- HI Corporation
- Honam Petrochemicals
- Huntsman
- Indesca
- Indian Institute of Technology (IIT)
- Industrial Chemistry Research Institute of Warsaw
- Ineos
- Institute for Macromolecular Studies (CNR-ISMAC)
- Institute of Chemistry, Chinese Academy of Sciences
- Institute of Chemistry and Engineering Sciences of Singapore (ICES)
- Instituto de Estructura de la Materia (CSIC)
- INTEX Industries
- iRPC Company
- Japan Advanced Institute of Science and Technology (JAIST)
- Japan Polychem Corporation
- Jordi Labs
- Kanazawa University
- Kasetsart University
- Kasra Co.
- Kimberly-Clark
- Kitami Institute of Technology
- LCGC Group
- Leiden University
- LG Chem
- Lion Copolymer
- LyondellBasell
FAST AND FURIOUS

GPC/SEC Solutions and Expert Support
Macromolecular characterization from the experts

GPC/SEC is our passion. We at PSS are fully dedicated to the advancement of macromolecular liquid chromatography by means of developing true solutions and providing competent and personal support.

Based on excellent products and the latest findings in material science, we create easy-to-use and powerful solutions for QC and R&D. From a single molar mass reference material to turn-key systems for GPC/SEC multi detection with light scattering, viscometry, mass spectrometry or fully compliant GPC/SEC for the pharmaceutical industry: PSS offers all products and services for successful macromolecular analysis and expert support by GPC/SEC enthusiasts!

Discover what’s new in macromolecular characterization and work with our specialists on your application challenges.

www.pss-polymer.com | contact: info@polymer.de
• Malvern Instruments
• Max Plant Institute for Polymer Research
• McGill University
• Mitsubishi Chemicals
• Mitsui Chemicals
• Nanjing University of Science and Technology
• National Institute of Standards and Technology (NIST)
• Nexans
• Ningbo Dacheng Advanced Material
• Ningbo Professional and Technical College
• Northeast Petroleum University
• Nova Chemicals
• Novolen Technology
• Petrobras
• PetroChina Company
• PetroChina Petrochemical Research Institute
• Poland Industrial Chemistry Research Institute
• Polimeri Europa, ENI Group
• Polymer Char
• Polymer Technology Services Centre (PTSC)
• Postnova Analytics
• Progression Inc.
• PSS, Polymer Standards Service
• PTT Chem
• Repsol
• Samsung Total Petrochemicals
• S.A.S. Corporation
• Sasol Polymers
• Saudi Basic Industries Corporation (SABIC)
• SCG Chemicals
• Sealed Air
• Sekisui Chemical
• Senoplast Klepsch & Co.
• Shenhua Group
• Shenhua Ningxia Coal Industry Group
• SIG Combibloc Systems GmbH
• Sinopec
• SK Energy
• SYNPO
• Sumitomo Chemical

• Tallinn University of Technology (TUT)
• Tasnee Petrochemicals
• Technical University of Eindhoven
• Teijin Aramid
• Thai Polyethylene
• The Dow Chemical Company
• Ticona
• Toho Titanium
• Tosoh Bioscience
• Total Petrochemicals
• Universidad Carlos III de Madrid
• Universidad Rio Grande Do Sul (UFRGS)
• Universidad Simón Bolívar
• University of Akron
• University of Alberta
• University of Joensuu
• University of Leeds
• University of Lyon
• University of Navarra
• University of Pardubice
• University of Rio de Janeiro
• University of Shiga Prefecture of Japan
• University of Stellenbosch
• University of Texas
• University of Thailand
• University of the Free State
• University of Waterloo
• Utrecht University
• Virginia Tech University
• Westlake Chemical
• W. R. Grace & Company
• Wyatt Technology
• Zhejiang University
Q. How can I dramatically reduce my development time for new polyolefin catalysts?

By using the PPR from Freeslate.

Reducing the time for development of new catalysts is paramount to accelerating innovation in polyolefins. The Freeslate Parallel Pressure Reactor (PPR) is a high throughput reactor system designed for the discovery and optimization of catalysts under realistic process conditions. It enables up to 48 experiments in parallel with operational temperature up to 190 °C and pressure up to 33 bar (490 psig). Combined with Freeslate Lab Execution and Analysis (LEA) software, the PPR accelerates your entire catalyst development process including experiment design, catalyst preparation and screening, process monitoring, and data analysis, maximizing your R&D productivity.

"While conventional, trial-and-error methods are expensive and time-consuming—taking anywhere from five to ten years from idea to commercialization—[Freeslate’s] fully integrated high-throughput methodology can identify the most promising catalytically active systems... in a matter of hours."

"By deploying [Freeslate] tools, we will enhance our ability to deliver innovative, high quality polyolefin plastics in a more timely and cost-effective manner."

For more information about the PPR, please visit the Freeslate booth (#7) or www.freeslate.com/ppr.
Join us again in 2014 at 5th ICPC

5th ICPC:
5th ICPC will take place again in the Mediterranean City of Valencia, one of the fastest improving European cities, within September and November 2014. You can get involved on 5th ICPC by several ways, such as:

· Attend:
 Both Professionals and Students can benefit from our Early Registration fees (to be published within 2013).

· Call for Papers:
 Abstracts for Oral or Poster Presentations are welcome. Please send your one-page abstract to: Raquel.ubeda@icpc-conference.org

· Sponsor:
 Promotional Packages are available for Sponsoring, Advertising and Exhibiting.
Stay Connected

- Join the ICPC E-Mailing List:
 To join or make sure you are included in the Polymer Char's ICPC E-Mailing list, please send an email to: Raquel.ubeda@icpc-conference.org. Main communications about next editions will be provided via this channel.

- Join the ICPC Group on Linkedin:
 To get updates and know other ICPC delegates, you can join our group on Linkedin by inserting "ICPC Conference" in the search-tool.

- Visit www.icpc-conference.org

in Valencia, Spain.